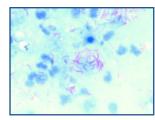


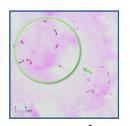
K E Y T A K E A W A Y S

Learning Objectives

- Describe key steps in NTM-LD diagnosis and how to reduce time to patient identification
- Incorporate practice guidelines, the latest evidence, and a multidisciplinary approach into management strategies for NTM-LD patients
- Assess how individualized treatment plans may help to further address complex cases of NTM-LD


Common Mycobacterial Species Causing Disease

- Mycobacterium Tuberculosis Complex
 - M.Tuberculosis
 - M. Bovis
 - M. africanum
- Mycobacterium leprae
- · Rapidly growing nontuberculous mycobacteria
 - M. fortuitum complex
 - M. chelonae
 - M. abscessus*
 - M. smegmatis
 - M. mucogenicum


- Slow growing nontuberculous mycobacteria
 - M. kansasii*
 - M. marinum
 - M. gordonae
 - M. scrofulaceum
 - М. хепорі*
 - M. avium complex (MAC)*
 - M. avium
 - M. intracellulare
 - M. chimaera
 - (others)

Laboratory Diagnosis of Mycobacteria

- Acid Fast Smear is done by either Ziehl-Neelsen or Kinyoun
- AFB Culture:
 - Solid medium: Lowenstein-Jensen and agar Middlebrook
 7HI0 or 7HII
 - Liquid medium: Mycobacteria growth indicator tube (MGIT)
 - Can take 4-6 weeks to grow
 - To identify mycobacteria, conventional biochemistry tests are used
- Early identification utilizes DNA probes
 - M. tuberculosis complex culture identification test—Rapid DNA Probe
 - MAC Culture Identification Test—Rapid DNA Probe

Ziehl-Neelsen¹

Kinyoun²

 $^{^{}st}$ Nontuberculous mycobacterial species that most commonly cause lung disease

Decreasing Time to Diagnosis³

- "Time is tissue"
 - Time to diagnosis of NTM-LD can be as long as 3-5 years
 - Diagnostic delays often lead to destruction of lung tissue
- · Clinical presentation is often nonspecific
 - Need to have a high index of suspicion
 - Consider NTM in patients who present with persistent cough and nonspecific symptoms, especially if present for more than 6 weeks
- Sputum samples
 - Multiple samples should be obtained/tested (ideally \geq 3)
 - Send specifically for AFB Smear and Culture

2020 NTM Diagnostic Guidelines Essentially Unchanged⁴

Disease Criteria (unchanged from 2007 guidelines)						
Clinical	Pulmonary/systemic symptoms					
Radiology	CXR-nodules, cavities, or CT-bronchiectasis with multiple small nodules					
Micro	With ≥ 2 sputa → 2 positive cultures, or With 1 BAL/wash → 1 positive bronchial wash, or With biopsy → positive biopsy culture, or 1 positive culture and biopsy evidence of disease					

Symptoms + Imaging findings + Microbiology = Disease...

...deciding to initiate antimicrobial therapy for NTM-PD should be individualized based on clinical factors, the infecting species, and individual patient priorities. Decision should include a discussion with the patient that outlines the potential side effects of antimicrobial therapy, the uncertainties surrounding the benefits of antimicrobial therapy, and the potential for recurrence including reinfection.

Risk Factors Associated With Progression of NTM-PD⁵

Host/demographic	Laboratory				
Male sexYounger agePresence of comorbiditiesLow body mass index	Elevated inflammatory indices (ESR, CRP)AnemiaHypoalbuminemia				
Radiographic	Microbial				
Fibrocavitary diseaseExtent of disease	Bacterial loadSpecies				

Drug Susceptibility Testing for Pulmonary MAC

Interpretation is unclear for most drugs, except...

Macrolides:

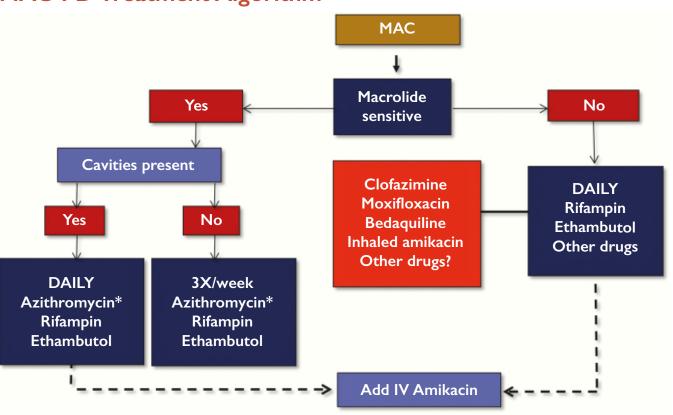
Resistance (clarithromycin MIC ≥ 32 mcg/mL) → poor response/outcomes

Amikacin (IV)

Susceptible MIC ≤ 16 mcg/mL
 Intermediate MIC 32 mcg/mL

Resistant MIC ≥ 64 mcg/mL

Amikacin Liposomal Inhalation


Susceptible MIC ≤ 64 mcg/mL
 Resistant MIC ≥ 128 mcg/mL

- Resistance associated with treatment failure despite amikacin administration
- RCT of inhaled amikacin → no patients with isolate MIC > 64 converted sputum

MAC-PD Treatment Algorithm⁵

*Clarithromycin is an alternative

Duration: 12 mos culture negatvity

Adding ALIS Increases Culture Conversion—CONVERT Study

- Amikacin-susceptible MAC-PD and positive sputum despite ≥ 6 month guidelines-based therapy (GBT) randomized (2:1) to ALIS+GBT or GBT alone
- Primary endpoint: culture conversion (3 consecutive monthly sets, 2-3 specimens each) by month 6
- N = 224 ALIS + GBT vs 112 GBT alone, mean age 65, bronchiectasis in 63% and COPD in 14%
- Conversion: 65/224 (29.0%) with ALIS + GBT vs 10/112 (8.9%) with GBT alone (4.2 (2.1-8.6), p < 0.001)
- Respiratory adverse events (dysphonia, cough, and dyspnea) in 87% of ALIS + GBT and 50% of GBT participants
- Adding ALIS to GBT in treatment-refractory MAC-PD achieved significantly greater culture conversion by month 6 than GBT alone

Monitoring for Side Effects⁸

- Patients are best managed via multidisciplinary team given the frequency of adverse reactions
 - ~20-37% of patients with pulmonary MAC discontinue therapy
- · Common side effects requiring monitoring

Side Effect	Clarithro- mycin	Azithro- mycin	Rifampin	Clofazimine	Rifabutin	Etham- butol	Amino- glycosides*	Macro- lides	Fluoro- quinolones
Gastrointestinal intolerance	✓	\checkmark	✓	✓					
Abnormal liver function tests	✓	✓	✓						
Low white blood cell count			✓		✓				
Impaired visual acuity or color vision						✓			
Decreased auditory function		1					✓		
Vestibular toxicity							✓		
Decreased renal function							✓		
Peripheral neuropathy				1		✓	✓		
Prolonged QTc				✓				1	✓

Treatment Considerations in Cavitary Disease

- Take cavitary disease seriously
- Treatment outcomes are worse in cavitary disease; use of injectable aminoglycosides can increase culture conversion. Daily oral therapy is recommended over three times weekly.
- IV Amikacin (or Streptomycin) is given daily-3 times per week for 8-16 weeks in addition to oral medications
- Use with caution for patients with renal disease. Some experts consider use of inhaled liposomal amikacin in these cases.

Resources/References

- 1. Prasad CSBR, et al. Ann Trop Med Public Health. 2011;4:110-112.
- 2. van de Weg CAM, et al. Access Microbiol. 2019;2(1):acmi000074.
- 3. Ryu YJ, et al. Tuberc Respir Dis. 2016;79:74-84.
- 4. Daley CL, et al. Clin Infect Dis/Eur Respir J. 2020;71(4):e1-e36.
- 5. Daley CL, Winthrop KL. J Infect Dis. 2020;222(Suppl 4):S199–S211.
- 6. Brown-Elliot BA, et al. / Clin Microbiol. 2013;51(10):3389-3394.
- 7. Olivier KN, et al. Am J Respir Crit Care Med. 2017;195(6):814-823.
- 8. UpToDate: Kasperbauer S, Daley CL. Treatment of Mycobacterium avium complex pulmonary infection in adults.